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Abstract

Recent advances in the fingerprinting of deep neural networks detect instances of models, placed in a
black-box interaction scheme. Inputs used by the fingerprinting protocols are specifically crafted for each
precise model to be checked for. While efficient in such a scenario, this nevertheless results in a lack of
guarantee after a mere modification (e.g. retraining, quantization) of a model.

This paper tackles the challenges to propose i) fingerprinting schemes that are resilient to significant
modifications of the models, by generalizing to the notion of model families and their variants, ii) an extension
of the fingerprinting task encompassing scenarios where one wants to fingerprint not only a precise model
(previously referred to as a detection task) but also to identify which model family is in the black-box
(identification task).

We achieve both goals by demonstrating that benign inputs, that are unmodified images, for instance, are
sufficient material for both tasks. We leverage an information-theoretic scheme for the identification task.
We devise a greedy discrimination algorithm for the detection task. Both approaches are experimentally
validated over an unprecedented set of more than 1,000 networks.

1 Introduction

Fingerprinting classifiers aim at deriving a signature uniquely identifying a model, like the human fingerprint’s
minutiae in biometry. This is essentially a black-box problem: the classifier to be identified is in a black-box in
the sense that one can just make some queries and observe its outputs. For instance, the model is embedded in
a chip or we can query it through an API (MLaaS).

The main application that related works [Il 2] [3, [, 5] target is the proof of ownership. An accurate deep
neural network is a valuable industrial asset due to the know-how for training it, the difficulty of gathering a
well-annotated training dataset, and the required computational resources to learn its parameters. The cost of
GPT-3, one of the biggest and most accurate NLP models is estimated to 4.6 million dollarsﬂ In this context,
the entity identifying a black-box wants to detect whether it is not a stolen model of her.

Another at least as critical application is information gain. For instance, an attacker willing to delude the
classifier first gains some knowledge about the remote model, or a company wants to determine which model is
in use in a competitor’s production system. This application has been left aside as of today, and we tackle it
under the notion of the fingerprinting identification task.

For clarity, we name Alice the entity willing to identify the model that Bob has embedded in the black-box.

Challenges The biggest difficulty is that there exist plenty of ways to modify a model while maintaining its
intrinsic good accuracy. These procedures simplify a network (quantification of the weights and/or activations,
pruning, see e.g. [6]), or make it more robust (preprocessing of the input, adversarial re-training [7]). We
hereafter name a modified model a variant. These mechanisms were not a priori designed to make fingerprinting
harder but they leave room for Bob to tamper with the fingerprint of a model. We assume that Alice also knows
some of these procedures. Yet, they are often defined by many parameters and among them scalars so that
there is virtually an infinite continuum of variants. Like in biometry, the fingerprint should be discriminative
enough for being unique per model but also sufficiently robust to identify a variant.

The approaches in the literature have two noticeable common pillars. They use the frontiers in the input
space drawn by a classifier as the fingerprint, i.e. the unique signature identifying the model [2, 4 [5]. Two
neural networks sharing the same architecture, the same training set, and the same training procedure are
different because the training is stochastic (like the Stochastic Gradient Descent). This makes their frontiers
in the input space not overlap. Most of the papers in the literature are looking for discriminative deviations of
these frontiers. Second, the key task is detection: Alice makes a guess about the model in the black-box and
then she queries these specific queries to test whether her hypothesis holds [2, 8l [ [5].

Thttps://lambdalabs.com/blog/demystifying-gpt-3/
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Figure 1: A t-SNE representation of the pairwise distances of 1081 different models: 10 types of variation
applied on 35 off-the-shelves vanilla models for ImageNet with different parameters (listed in App. [B.2). This
work exploits the clear separability (clusters of consistent colors) observed in the decisions of these models.
Confusions yet happen (model colors further apart from their cluster), but are under scrutiny for the tracking
of false positive identification.

Rationale We find that before resorting to the crafting of inputs for fingerprinting models, the use of benign
inputs has not been thoroughly investigated. The use of benign inputs would constitute a certain advantage,
as it would remove the need for the design of often complex ways to efficiently craft these. It is less prone
to defenses being implemented on Bob’s side (e.g. rejection based on the distance to the decision frontier
[9]). A second salient observation is the restriction of previous works on the detection task. The more general
possibility to identify a model or a family of models inside the black-box remains unstudied. Our work thus
differs from related works on these two key aspects: i) we do not forge any specific input but use regular benign
inputs (so that we do not need to probe the input space to discover the decision frontiers), and i) we directly
identify models using their intrinsic classification difficulties on a handful of inputs, this is more efficient than
sequentially detecting models until finding the good one.

In a nutshell, when Bob has picked a model among a set of networks known by Alice, then our solution is
essentially deterministic: Alice has to find the sequence of inputs of minimum length to identify the black-box.
We apply a greedy algorithm that carefully selects the input to iteratively narrow down the set of suspects,
i.e. candidate models, until it becomes a singleton. Approximation theory tells that this is suboptimal but we
report that in practice many networks are indeed identified within less than three queries.

When an attack by Bob has made a variant of a model, the output of it may not match the output of any
known model. We then use C.E. Shannon’s information theory to measure the statistical similarity between the
outputs of two models. As an appetizer, Figure [1] depicts the t-SNE representation from the pairwise distances
within a set of 35 vanilla models and their variants. The model families are well clustered in the sense that
variants are closer to their original network than any other model. Alice may not identify precisely the variant
of the model but at least she can identify its family, i.e. infer which was the original vanilla model and even
which kind of variation was applied to it.

Contributions Our contribution is fourfold.
1) We demonstrate that the mere use of benign images is enough to accomplish high success rates for finger-



printing modern models. This is to be opposed to the computationally demanding task of crafting inputs for
that same goal.

2) The fingerprinting detection task, introduced by state-of-the-art works, is complemented with the introduc-
tion of the identification task. We frame the latter as an information theoretical problem.

3) We present a distance based on the empirical Mutual Information, gauging how close two models are. This
distance permits to generalize the notion of attacks on models through the notion of model families and variants.
4) We perform extensive experimentation by considering more than 1,000 classification models on ImageNet.
A head-to-head comparison with the two related works reports significant improvements w.r.t. accuracy in the
detection task.

Document structure Section [2]is a threat analysis listing all the working assumptions in our work. The
next two sections deal both with detection (Alice verifies her hypothesis about the black-box) and identification
(Alice discovers which model is in the black-box) but under two scenarios: Section [3| builds on the fact that
Bob has picked a model among the set known by Alice, whereas Section [4] assumes that the black-box may be
an unknown model. Both sections contain experimental results. Section [6] is devoted to the related works and
the benchmark with state-of-the-art detection schemes. The appendices contain a summary of the notations,
details about the experimental protocol, and supplementary results.

2 Threat Model

This section details the goals of Alice and Bob.

2.1 Bob: keeping his model anonymous
2.1.1 Goals

Bob is playing first by secretly selecting a model and putting it in the black-box. This model can be a vanilla
model or a variant of a known model. A variant is created by applying on a given vanilla model m the procedure
V parametrized by 6 € © which describes the type of modification and the associated parameters; this can be
thought of as an attack by Bob on the vanilla model to harden identification. We denote such a variant by
v=V(m,0).

The goal of Bob is to offer an accurate black-box classifier while maintaining the ‘anonymity’ of the model
in use. The first requirement is that a small loss in performance is tolerated. If a variant does not comply with
this criterion then Bob cannot consider it as an option. In classification, the performance of a model m is often
gauged by the top-1 accuracy, denoted acc(m). We formalize this requirement as

acc(m) — acc(V(m, 0))
acc(m)

<, (1)
where n > 0 is the tolerance (set to 15% in our experimental work).

2.1.2 Ressources

The second requirement is more delicate. We first need to limit the power of Bob. If Bob creates an accurate
model ex nihilo, then Alice can pursue neither detection nor identification. We assume that Bob cannot train
such a model from scratch because he lacks good training data, expertise in machine learning, or computing
resources. This also means that Bob cannot retrain a model, or only up to a limited extent. In other words,
the complexity of the procedure creating v = V(m, #) ought to be much smaller than the effort spent at training
the original model m.

Our experimental work considers two kinds of procedures:
1) modification of the input: v(z) = m(T(z,0)). Classifiers are robust to benign transformations of the input. As
far as images are concerned, the transformation T can be JPEG compression, histogram equalization, blurring,
etc. In the same spirit, Randomized Smoothing consists in adding noise patterns to the input and aggregating
the predicted classes into one single output.
2) modification of the model: v(z) = T(m,0)(z): The transform T slightly changes the model weights by
quantization, pruning, adversarial retraining, finetuning... Some of these procedures require small retraining
with few resources so as not to lose too much accuracy.

In the sequel, the model in the black-box is denoted by b and B is the set of possibilities: b € B. This set is
defined as:

B={v=V(m,0):meP,0c0O,acc(v) > (1 —n)acc(m)}, (2)

where P is a set of vanilla models and O a set of transformations (encompassing the identity v = m).



2.2 Alice: disclosing the remote model
2.2.1 Goals

The task of Alice is to disclose which model is in the black-box. This has two flavours: detection or identification.

Detection (denoted by D) means that Alice performs a hypothesis test. She first makes a hypothesis about
the black-box, then makes some queries, and finally decides whether the hypothesis holds based on the outputs
of the black-box. The outcome of the detection is thus binary: Alice’s hypothesis is deemed correct or not. This
is the nominal use case in the related works [T}, 2, 3 [l [5].

Identification (denoted by |) means that Alice has no prior about the model in the black-box. She makes
queries and processes the outputs to finally make a guess. The outcome is either the name of a model she
knows, or the absence of a decision if she has not enough evidence.

2.2.2 Knowledge about the black-box

The second crucial point is her knowledge about the black-box. Alice can only detect or identify a relation
to a model she knows: this means that she has an implementation of this model, which she can freely test in
white-box access, typically locally on her machine. We denote the set of models known by Alice by A.

As by the very definition of a variant, Alice may know some of them but not all of them. For instance, some
procedures V admit a real number as a parameter. Therefore, there is virtually an infinite number of variants.
This leads to the convenient notion of a model family, we now introduce under three flavours:

e F(m): This family is the set of all variants made from the original vanilla model m:
F(m) :={v=V(m,0):0 € 0O}. (3)

e F(m,¥): This family is the set of all variants made from the original vanilla model m by a specific
procedure:
F(m,¥)={v=V(m,0):0 ¥ C O}, (4)

where ¥ denotes the subset of parameters related to this specific procedure.

o F(m,{60}): This family is a singleton composed of a particular variant:
F(m, {0}) = {v=V(m,0)}. ()

With these definitions in mind, detection is based on the hypothesis that the black-box belongs to a given
family, while Identification looks for the family the black-box belongs to.

2.2.3 Resources

A third element is the resources of Alice. We already mention the set A containing some vanilla models and
few variants of theirs. She also has a collection of typical inputs, i.e. a testing dataset. We suppose that they
are statistically independent and distributed as the data in the training set of the models. In the sequel, the
collection of inputs is denoted X = {z1,...,zn}.

In the end, be it for detection or identification, Alice selects some elements of X' for querying the black-
box. We denote this by an ordered list of indices: qi.0 = (q1,...,q) € [N]¢, where [N] := {1,...,N}. This
means that Alice first queries z,,, and then x,, and so forth. The outputs of the black-box are denoted as
210 = (Zqus - - - » 2q, ), With zg, = b(zg,).

2.3 The classifier in the black-box

The black-box works as any classifier. We denote the set of possible classes C. The output z = b(z) for input
is the first k classes ordered by their predicted probabilities (i.e. the top-k). It means that z is an ordered list in
CF: z = (c1,...,cr). The set Z;, of possible outcomes has a size as big as (C)y, == C(C —1)...(C —k+1). The
black-box only discloses these classes, not the associated predicted probabilities. In the experimental work, the
size of C is 1,000 (ImageNet) and k € {1,3,5} which is usual in several image classification APIs. We assume
that the considered models and variants have an accuracy which is not perfect. The top-1 accuracy of ImageNet
classic models ranges from 70% to 85%.



2.4 Summary

This paper considers scenarios which are labeled as (Task, F, A, k) where Task € {D, 1} (Detection or Identifi-
cation), F is the kind of family that will be inferred by Alice, A is the set of models known by Alice, and k
indicates that the output of the black-box is the top-k classes. There is a clear cut between the following two
cases:
1) Walled garden: A = B. We impose that the black-box is one of the networks known by Alice.
2) Open world: A C B. The black-box may not be a model known by Alice. This is the case when Bob uses an
unknown variant, for instance.

This distinction drives the structure of the next sections because our solutions are of different nature.

3 The black-box is a known model

Under the assumption that A = B, Alice achieves her goal when she correctly guesses which family the black-box
belongs to. The alternative is to fail to gather enough evidence to make a decision. For the sake of clarity, we
explain our procedure for a given family F C A, which can be one of the three types of families presented in

Sect. [2.2.2)

Alice has a set of models composed of some vanilla models P = {m1,...,my/} and some variants of theirs.
Alice also has the collection of benign inputs X = (x1,...,2y). Offline, she creates a database of |A|N outputs
(M(2))meA,je[N]-

Let D be a subset of A. We define by D(z) := {m(z)|m € D} the set of labels predicted by the models
in D for input . With abuse of notations, D(z,,,,) is the set of the concatenation of labels predicted by the
models in D for the entries (z4,,...,%). Conversely, M(z,y,D) := {m|m € D,m(z) = y} lists the models in
D predicting y when z is submitted.

3.1 Detection (D, F, A= B, k)

Alice first makes a hypothesis about a family F, and her goal is to discover whether the outcome is positive
(b € F) or negative (b € A\F). We assume that Alice is convinced about her hypothesis and that she hopes
for a positive. Our procedure thus focuses on reducing the number of models in A\ F likely to be the black-box.

Alice uses a greedy algorithm which leverages the information about the black-box retrieved from the previous
queries. According to the outputs of the black-box, several models can be discarded. At step £, (A\F)® (resp.
F (é)) denote the subset of models in A\F (resp. F (é)) which agree with the previous outputs. These are
candidates in the sense that they could be the black-box model.

J4
(AVF) = () Mg, blxg,), A\VF). (6)

i=1

Initially, all the models are candidates: (A\F)©) = A\F and F(©) = F. At step £+1, the greedy algorithm sorts
the inputs that have not yet been queried according to a score. This score s(¢+1) (x) reflects how much the set of
candidates (A\F)® reduces if input  is submitted next. It is thus based on the quantities | M (x,y, (A\F)®)|.

Expectation Convinced that her hypothesis is correct, Alice computes the expectation of the number of
candidate models outside the family after querying input x. The average is weighted by the number of models
in F© predicting a particular label, as if the black-box were randomly picked in F©):

IM(z,y, FO)|

S(Z—H)(JJ) == Z ‘M(J’J, Y, (‘A\}-)M))

yeF O (z)

Worst Case Instead of a sum, Alice takes the maximum which corresponds to the worst case, at the same
time likely to happen and reducing the list of candidates by a small amount if any:

(0)
(+1) oy _ @] M@y, FO)|
@) = ma My, (AVF) ) FRE ®)
Alice then submits one of the inputs with the lowest score:
g1 € argmin s (). (9)

Our procedure stops after L iterations when meeting one of the three stopping criteria:



o (A\F)E) = (): The detection result is positive. No model outside the family responds like the black-box.
The black-box is part of the family since we assume it belongs to A.

o F(I) = (): The detection result is negative. The responses of the black-box are different from the ones of
the models in the family F.

e ming s(EH (2) = |[(A\F)P)|: The detection failed. All the remaining models in (A\F)®) and in F(&)
produce the same prediction no matter which input is submitted. It is therefore impossible to discern
them.

3.2 Identification (I, F, A = B, k)

Identification means that Alice makes a partition of her set of models in disjoint families: A = U% F;. Her
goal is to identify which family the black-box belongs to.

It is easy to base a verification procedure onto a detection scheme assuming there is no failure. Alice
arbitrarily orders the families, and sequentially tests the hypotheses until she finds a match. The expected
number of queries is given by (see the proof in App. :

1 & nr — 1

B(L) = — ZE (LP>®) + o Z]E (L7°#) (10)
Jj=1 j=1

where (E(L5%), E(L}®)) are the expected number of queries necessary for taking a positive or negative decision

about the detection of the hypothesis F;.

We propose a better approach based on a greedy algorithm similar to the detection one. Suppose that Alice
has already submitted ¢ queries to the black-box. By comparing the outputs of the black-box and of the models
she knows, she is able to distinguish models which are not in the black-box from models likely to be in the
black-box. This list of remaining models is denoted A®). The goal of Alice is to reduce the set of candidates to
a single family F;, not knowing in advance the model Bob placed in the black-box:

3, F; c AW, (11)

In the beginning, all the models are possibly in the black-box, i.e. A©) = A. At step £ + 1, the greedy
algorithm chooses the best input to query next knowing A®). Alice may resort to the following heuristics.

Expectation. Alice supposes that the black-box is randomly chosen uniformly in the set of remaining models
AW For any input x not queried yet, she computes the expectation of the numbers of remaining families if that
input were selected next, i.e. {F;|F; N A+ £ (}. She randomly chooses among the inputs which minimize
this figure:

s () = Z ["f 5 (M(x,%fi@)) ] @)] M (12)

) ’
yeAWO (z) A

i=

where ¢ is the indicator function of an event.

Worst case. For any input not queried yet, Alice computes the maximum of the numbers of remaining families
if that input were selected next weighted by the probability of this event:

(£41) o e ) |M(xay7A(Z))‘
@)= max [;aww,y,fi >¢®)] e (13)

The input to be submitted is randomly picked among the ones with the lowest score:

g1 € argmin s (). (14)

3.3 Experimental work
3.3.1 Detection

A first experimental work measures the number of queries needed for detection with the three types of family
defined in Eq. 7 and . It considers two cases: Alice’s hypothesis is correct (positive case) or incorrect
(negative case). The cases are not analyzed exhaustively. For example, in the negative case for a singleton family
(i-e. Alice is wrong to suspect that the black-box is F(m, {6})), there are |A|(].A] — 1) possible combinations,
i.e. more than a million. Instead, the experiment randomly picks 1.000 positive and 1.000 negative among all
these cases.
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Figure 2: Probability distribution of the number of queries for (D, F, A = B, k) using the expectation score
when the black box returns top-k classes with k = 1 (blue), k = 3 (red) or k = 5 (green). Family considered

from left to right: F(m) (@), F(m, ¥) {@), and F(m,{6}) ().

Figure |2[ shows the best results obtained with the expectation score . Results for the worst-case score
are shown in App. Fig. As a side-product, Table [I] gives the percentage of inputs in X answering the
detection problem under the best case, i.e. when one unique query is sufficient.

Few queries are enough. When the detection succeeds (with a positive or negative decision about the
hypothesis), at most three queries are needed, and in most cases, only one is sufficient. This holds although the
greedy algorithm is known to be suboptimal. When the greedy algorithm needs three inputs, another algorithm
may only need two queries. Yet, when the greedy algorithm needs two, no algorithm can do better because
the greedy would have found an unique input if existing. Positive and negative conclusions are roughly drawn
within the same number of queries, although our algorithm is designed to quickly prove positive detections.

Few failures. The inability to detect the model in the black-box as part of the family F happens when:
dm e F,dm’' € A\F,Vz € X, m(z)=m'(z). (15)

The failures occur when the family corresponds to a set of variations or an exact model . It happens that
the algorithm cannot distinguish a few pairs of different variations issued from the same vanilla model. This
is the only possible explanation: Otherwise, i.e. the indistinguishable models come from two different vanilla
networks, this setup would also end up in a failure when detecting families spanned from a vanilla model ,
which is not reported in Fig. In other words, Alice can always guess that the black-box is a variation of a
given vanilla model, and rarely she cannot guess which variation it is exactly.

On the other hand, failures should also happen in the negative case. None is reported in Fig. [2] because
they are statistically rare. For a given family F, suppose that the models m and m’ in are both unique. A
failure happens in the positive case if Bob puts model m in the black-box. This happens with probability 1/|F|.
A failure happens in the negative case if Bob puts model m’ in the black-box. This happens with probability
L/JA\F] < 1/|F].

Experimentally, the number of queries to end up in a failure is similar to the number of queries for getting
a positive outcome.

A bigger top-k is better. When the output of the black-box is rich, i.e. top-k classes with k£ > 1, one
unique input is sufficient. Moreover, Table [I] shows that there are more of these unique inputs in X. In this
case, Alice no longer needs a large collection of benign inputs.

A bigger family is harder to detect. Families of type are bigger than families (4]) which are bigger
than the singleton . Ignoring the failure case, Figure [2f and Table [1| show that it is harder to detect a large
family. It is more frequent that some model members take different outputs in large families. On the contrary,

Table 1: Percentage of inputs in X’ concluding detection (D, F, A = B, k) within a single query.

Family ‘ top-1 top-3  top-5
Vanilla F(m 0.28% 1.2% 12.5%
Variation ]-' 0.31% 4.8% 21.0%
Singleton JF(m 0.37% 8.3% 31.4%
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Figure 3: Probability distribution of the number of queries for (I, F, A = B, k) using the expectation score
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Figure 4: Average number of queries as a function of the number of families nz for (I, 7, A = B, k) with the
expectation score (7)) and when the black-box returns top-k classes with k = 1 (blue), k = 3 (red) or k = 5
(green). The dotted lines are the linear regressions. Family considered from left to right: F(m) (@), F(m, ¥) (@),

and F(m, {6}) (5).

we observe that the variants of the same model with the same variation but with different parameters often
share the same output.

3.3.2 Identification

The protocol is similar to the previous one for detection. Figure [3] shows the best results obtained with the
expectation score ([12]). The results for the other score are slightly worse and shown in App. Fig.

Identification vs. Detection. Comparing Figures[2] and [3] two times more queries are necessary for iden-
tifying a family rather than detecting it. It is possible to identify a model quickly with at most five benign
queries which are a lot less than the sequential procedure . Identification is a harder task than detection to
a small extent.

The biggest difference is under the top-1 scenario where a unique query is rarely sufficient. The 35 vanilla
models considered here were trained on the same dataset. They have good accuracy (> 70%). If many unique
inputs to identify existed, this would mean that for any of these inputs, the 35 models give 35 different top-1
predictions. Assuming that one of these models makes a correct classification, the other 34 models are wrong.
If a lot of these inputs existed, this would imply models with low accuracy. In other words, these inputs are
necessarily rare, or even non-existing.

A bigger top-k is better. In contrast to detection, the gain of information provided by top-3 and top-5
outputs is very substantial. When the top-5 is returned, 90% of the families are identified within one query.
The supervised training of the vanilla models only focuses on the top-1 s.t. it agrees with the ground truth
class. For k > 1, the top-k is almost specific of the network. This explains the big improvement from top-1 to
top-k.

Number of families. Figure [ represents the evolution of the average number of queries to identify one out
of nr families. The more families, the bigger the number of queries on average. But this number also depends
on the size of the families and the top-k. We observe that the increase is roughly linear (see dashed lines in
Fig. E[) As a rule of thumb, we observe that the expectation of the number of queries roughly follows the
empirical law:

|F)nr

E(L) ~ 0.002 x ¢ (), (16)



where E(|F]|) is the average number of elements in the family. This is a major improvement w.r.t. (10). For
instance, for singleton family, E(|F|) = 1 and the rate equals 0.002 under top-1, whereas the rate in (10} cannot
be lower than 0.5 since we need at least one query to discard a hypothesis, 7.e. ]E(L;eg) > 1.

4 The black-box is an unknown model

This section assumes that A C B because B contains unknown models or variants of some models known by
Alice.

4.1 Modeling
4.1.1 Assumptions

Our working assumptions are the following: When queried by random inputs, a variant V(m, #) produces outputs
statistically

e independent from the outputs of a different model m’ # m.
e dependent from the outputs of the original model m.

We consider a particular procedure for generating a variant as being like a transmission channel. The output Z
of the variant V(m, 6) is as if the output Y of the original model m were transmitted to Alice through a noisy
communication channel parametrized by 6. Like in C.E. Shannon’s information theory of communication, we
model this channel by the conditioned probabilities Wy(z,y) = P(Z = 2|Y = y),V(z,y) € Z;.

4.1.2 Surjection

One difficulty of this context is the big size of the set Zj, of outcomes under the top-k assumption: |Z| = (C)x.
It is then difficult to establish reliable statistics about the transition matrix Wy which is as large as (C)g x (C)k.

When working with top-k outputs, Alice resorts to a surjection Sy : Zj — S with S, :={0,1,...,k}. This
greatly reduces the set of outcomes. We denote z = Si(z) and § = Si(y). Function Sy is slightly more complex
than suggested by this simple notation. Indeed, for any input x, we assume that Alice has a reference class
c(z) € C. If this input z is annotated, ¢(z) is its ground truth class. Otherwise, Alice computes the top-1 output
of all the models she knows, and takes a majority vote to decide on ¢(z). For this piece of data, a model gives
m(z) = (e1,...,c) and the surjection makes:

Se(m(z)) = {j if 35: ¢; = c(x) (17)

0 otherwise.

In words, S (m(z)) is the rank of the reference class in the top-k output or 0 if the reference class is not returned.
In the end, Alice uses a transmission matrix (Wy(Z, 7)) which is only (k+ 1) x (k+1).

4.2 Detection (D, F, A C B, k)

For the detection task, Alice first makes the following hypothesis: The black-box is a variant of the vanilla
model m € A. This variant may be the identity (b = m), or a variant she knows, or a variant she does not
know.

Contrary to the previous section, Alice randomly chooses L inputs (Xi,...,X1) C X to query the black-
box and compares the observations (Z1,...,Zz) to the outputs she knows (Y1,...,Yz), with Z, := Si.(b(X,)),
Yy == Si(m(X,)),¥¢ € [L]. We use capital letters here to outline that these are random variables since Alice
randomly chooses the inputs.

There are two difficulties: i) to gauge the distance between the outputs observed from the black-box and
from model m (see Sect. and ii) to randomly sample informative inputs from the set X' (see Sect. .

4.2.1 A discriminative distance
Alice is indeed testing two hypothesis:

e Hq: The black-box is a variant of model m. There is a dependence between Z and Y which is captured
by the statistical model of the variant:



e Hy: The black-box is not a variant of model m. There is no statistical dependence and

The well-celebrated Neyman-Pearson test is the optimal score for deciding which hypothesis holds. For L
independent observations, it writes as

> L

L = _ I
s = lo ~ ~ = log —=——=~. 18
Zl S Po(Z =3,V =) Z_ &P - (18)

We introduce the empirical joint probability distribution defined by

Pyy(2.9) =LY {j € [L]: % = Z and §; = 3} (19)
in order to rewrite (L8] as
W,
s=L Y Pyy(ai)log WUED. (20)
) IP’(Z =3)
(2,9)eS;

This formalization is not tractable because Wy is not known: Alice does not know which variant 6 is in the
black-box, and indeed it might be an unknown variant. Yet, it guides us to a more practical score function, the
empirical mutual information:

SO . > (2,7
I(ZY)= Y Psy(279)log M (21)
(27ﬂ)65§ Z(Z) ?(y)
with the empirical marginal probabilities:
Py(2)= ) Pzy(23), Py@i) =) Pry(24) (22)
GESH, zESk

In words, the model of the distributions (Pg,P;) is replaced with empirical frequencies learned on the fly.
Resorting to the empirical mutual information to decode transmitted messages in digital communication is
known as Maximum Mutual Information (MMI), recently proven universally optimal [10].

The empirical mutual information is a kind of similarity (the bigger, the more Z looks like Y) Its value lies

in the interval [0, min(H(Z), H(Y))] with the empirical entropy given by:
Z P;(%)log Py(%). (23)

We prefer dealing with a normalized distance and we introduce:

1(z,7)

Dp(b,m):=1- _
mln(H(Y),H(Z))

€ [0,1]. (24)

This defines the distance between the models b and m respectively producing Z and Y. Indeed, Fig. 1} in the
introduction is a t-SNE graphical representation extracted from such pairwise distances between models in B.
For instance, let us consider two extreme scenarios:

e The model m is in the black-box so that z; = §;, Vj € [L]. Then P; 3(z,3) = 1 if Z = g, and 0 otherwise,
producing Dr,(b,m) = 0.

e The black-box and model m yield independent outputs so that P (2, ) = P5(Z) Py (7), then Dr(b,m) =
1.

In the end, Alice deemed the hypothesis #; as being true when the distance is small enough: Dy (b,m) <
T — H; is true. Alice makes two kinds of errors:

e False positive: Dy (b, m) < 7 whereas H; is false.
e False negative: Dy (b, m) > 7 whereas H; is true.

Alice sets the threshold 7 such that the probability of false positive is lower than a required level a. The
converse, i.e. controlling the probability of false negative, is an illusion. Appendix |D|shows for instance that
there is no way to theoretically upper bound the distance between a variant and its original model, even if both
of them share good accuracy. Our working assumption is that this mutual information is indeed large enough
for a reliable hypothesis test and the experimental work confirms this in Sect.
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4.2.2 Selection of inputs

The empirical mutual information is a consistent estimator of the mutual information which depends on the
channel transition matrix Wy and the input probability distribution Py. A result of the theory of communication
is that for a given transmission channel, there is an input probability which maximises the mutual information.
This is of utmost importance in order to design a communication system achieving the channel capacity as
defined by C.E. Shannon. In our framework, this would make the distance between a model and its variant
closer to 0 likely avoiding a false negative.

However, this idea is not applicable to our scheme because Alice may know a plurality of variants, each of
them leading to a different optimal input distribution. The black-box may also contain an unknown variant
excluding any optimization.

Yet, when Alice randomly chooses the inputs, she has the feeling that these inputs must not be too easy
to be classified otherwise any model outputs the same prediction. This is not discriminative of the presence
of a given model in the black-box and it may lead to a false positive. On the other hand, these inputs must
not be too hard to be classified neither otherwise the prediction tends to be random, destroying the correlation
between a model and its variant. This may lead to a false negative.

The experimental work investigates several selection mechanisms of the inputs. All of them amount to
randomly pick inputs from a subset X’ of X.

e All. There is indeed no selection and X’ = X.

e 50/50. Alice’s hypothesis concerns a family of variants derived from a vanilla model m. X’ is composed
of 50% of inputs well classified by m (i.e. m(z) = ¢(z)), 50% inputs for which m(z) # c(x).

e 30/70. The same definition but with 30% well classified and 70% wrongly classified by m.

e Entropy. X’ is composed of the inputs whose top-1 predictions are highly random. For a given input, Alice
computes the predictions from all the models in A and measures the empirical entropy of these predicted
labels. She then sorts the inputs of X’ by their entropy, and X’ contains the head of this ranking.

The second and third options are dedicated to the detection task since they only need the vanilla model m at
the root of Alice’s hypothesis. The last selection mechanism demands a long preprocessing step depending on
how big the set of models A is. It is dedicated to the identification task.

4.3 Identification (I, F, A C B, k)

The identification task is nothing more than an extension of the detection. Instead of a binary hypothesis, Alice
is now facing a multiple hypotheses test with M + 1 choices:

e H;: The black-box is a variant of vanilla model m;, with 1 <i < M,
e Hy: The black-box is a variant of an unknown model.

The usual way is to compute distance Dp, (b, m;) per vanilla model m; € A, and to decide for model * =
arg maxi<i<m Dr(b,m;), if Dr(b, m;«) is lower than a threshold, otherwise Alice chooses hypothesis Hy. If a
known model is in the black-box, only three events may occur:

e Alice makes a correct identification,
e Alice can not make any decision, i.e. she deems Hy as true.
e Alice makes a wrong identification.

Again, by fine-tuning the threshold, Alice controls the probability of the last event. Note that the probability
of success is expected to be smaller than for the previous task. Identification is more difficult since several
hypotheses are competing.

4.3.1 Compound model

Information theory helps Alice again thanks to an analogy with the communication over a compound channel.
In this communication problem, a message m; has been emitted and transmitted through a channel Wy. The
receiver knows a compound channel, i.e. a set of channels {6; }}/:1 C O. It knows that the received signal has
gone through one of them, but it does not know which one. There exists an optimal decoder for each channel
in the set. The receiver just does not know which one to use. A theoretically grounded decoder is to decode
the received signal with each of the decoders and to aggregate this decoding with a min operator [I1].
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The analogy is the following: the inputs go through all the models {m;} known by Alice, and the outputs
are like messages. Bob has chosen one model, i.e. one of these messages. Yet, Bob uses a variant which
emits noisy outputs observable to Alice. Now, suppose that Alice knows a set of variants in a given family:
{V(m;,0;)}; C F. She uses these variants for computing distances Dy, (b, V(m;,6,)) that she aggregates into
one distance w.r.t. the family:

Dp(b,F) = mjinDL(b,V(mi,Hj)). (25)
Intuitively, the black-box might be a very degraded version of a model which is indeed ‘closer’ to a milder
variant than to the original model m;.
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Figure 5: Histogram of the distance Dy (m1, m2) when (mq, m2) € F%(m) (orange), (mq, m2) € F%(m, ¥) (green),
or my; and my are variants of different vanilla models (red). Inputs randomly sampled in X' (top) or in X' -
Entropy Sect. (bottom).

4.4 Experimental work

The previous experimental work in Sect. considers three kinds of family concerning the black-box as defined
in Sect. When the family is a singleton, because F = F(m,{0}) or F = F(m,¥) and |¥| = 1, then the
distance between the black-box and this unique model is exactly zero. This easy case is now excluded to focus
on cases where Alice does not know the variant in the black-box.

Contrary to Sect. Alice now resorts to statistical tests. Any distance between models is a random value
since the queries are randomly selected. Our protocol makes 20 measurements of any considered distance thanks
to 20 independent inputs samples.

4.4.1 Assumptions about the statistical model.

Section makes two assumptions about the statistical dependence between the predictions of models in the
same family F and independence when coming from different families. Figure [5] experimentally verifies these
working assumptions.

The distances between two models V(m, #) and V(m’,8’) for two vanilla models m and m’ and any variants
(6,0") € © x © are computed. This sums up to 583,740 combinations. Figure |5| shows the histogram of these
distance values over 20 bins in red. Perfect statistical independence implies a distance equaling 1. A low number
of queried inputs makes the measured distance spread over a large range. The selection of the inputs has a
major impact. When sampled on X (first row), the query may be an ‘easy’ input correctly classified by any
model. This spoils statistical independence. When sampled on X’ containing inputs hardly correctly classified
(second row), the distances are closer to one.

The figure also shows the histogram of distances between models belonging to the same family spanned by
a vanilla model m, be it F(m, ¥) (same type of variation) or F(m) (any kind of variation). As explained in
App. it is not possible to get a non-trivial upper bound of the distance in this case. We observe that two
models from the same type of variation are usually closer. It is therefore easier to detect or identify families
F(m, ) than F(m).
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4.4.2 Detection (D, F, A C B, k)

The experiment considers all combinations of hypothesis and model put in the black-box. There are 35 vanilla
models and 1046 variants. This makes 35 families of type F(m) with an average of 30 members per family. This
represents 1081 positive cases and 36,754 negative cases. There are 377 families of type F(m, ¥) of which 203
with a size bigger than 1. This makes 907 positive cases and 218,536 negative cases. The detection performances
are gauged by the True Positive Rate (TPR) when threshold 7 is set to get a False Positive Rate (FPR) of 5%.

Selection of inputs. Table [2| shows the TPR obtained when the black-box returns only top-1 decisions. As
expected, the performances for the families F(m, ¥) are higher. The selection Entropy is clearly the best option.
Its drawback is that it needs statistics about the predictions of many vanilla models. As far as the detection
task is concerned, the other selections are to be preferred because they do not require anything else than the
predictions of the suspected vanilla model. In the sequel, the selection 30/70 is used for further experiments on
the detection task.

The delegate model Alice measures a single distance in between the black-box and a delegate model of the
hypothesis’ family F. Which member of the family is the best delegate? Three choices are proposed based on
the distance to the vanilla model spanning the family: Close, Median, and Far. For instance, the Close option
means that the delegate is the closest member in the family to the vanilla model:
. !
mg = arg ngléI}DL(m7 m’). (26)

In the case where F = F(m), the closest member is m. It is not the case when F = F(m, ¥), because the
vanilla model m is not in this family. Recall that the intersection between two families has to be the empty set,
otherwise Alice could not distinguish them.

Table [3] evaluates the three options. Only the 180 families with more than 3 members are considered here.
For smaller families, the three options would give the same delegate.

The delegate greatly influences the results. The best choice is to select the delegate as lying at the ‘center’ of
the family. It means the Close option for the family F(m), which is indeed the vanilla model m, or the Median
option for family F(m, ¥).

Top-k observations The detection is evaluated for top-k outputs in Fig.[6] The best results are surprisingly
obtained for k = 1 in Tab.[d] Our explanation is the following. The bigger k the richer the model. Yet, the
empirical mutual information is calculated from (k+ 1)2 estimated probabilities. For a given number of queries,
the fewer estimations the more accurate they are. The top-1 quickly gets very good results close to 100%, so
that the richer models but less accurately estimated for larger k are not competitive.

To summarize, the TPR reaches 95% for 160 queries under top-1, 200 under top-3, and 250 for top-5.

4.4.3 Identification (I, F, A C B, k)

All conclusions obtained in the previous section are kept. Alice now has for delegate the vanilla model m for
F(m) and the Median model for F(m, ¥). Images are sampled with Entropy as defined in Sect.

Protocol We divide the identification task into two parts. First, Alice identifies a family F(m). As explained
earlier, she can make an identification (#;) or abstain (#(). Depending on what is in the black-box, two correct
answers are possible. In the negative case where b € F(m’) but m" ¢ A, the correct answer is to abstain. The
threshold 7 is set s.t. the probability of error in a negative case is set to 5%. In other words, Alice minimizes her
decision error when she has to abstain. For this purpose, A is now composed of 30 models and the remaining 5
are used to generate the negative cases. Alice thus computes the distances between b and the 30 vanilla models
in A. We repeat this 20 times where the tier of 5 excluded models is randomly sampled in P. In the positive
case where b € F(m;) and m; € A, the correct answer is to decide for hypothesis H;.

In the second part, Alice identifies the variation, knowing she has made a correct identification of the
global family F(m). In this case, Alice has to identify the correct variation among 6 families {F(m, ¥;)},=1.6:

Table 2: True Positive Rate for (D, F,A € B,1) with 100 random queries selected in X’ (See Sect. [4.2.2)).
Delegate selected as the closest of m. False Positive Rate is set to 5%.

| Al 50/50 30/70 Entropy

F(m) 79.4+2.1 892+13 91.14+15 952405
F(m,T) | 85.4+09 94.1+0.7 96.6+0.5 99.8+0.1
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Table 3: True Positive Rate for (D, F, A C B, k) and different delegate options with L = 100 random queries
in 30/70, FPR = 5%.

| F(m) F(m, ¥)
Delegate ‘ top-1 top-3 top-5 top-1 top-3 top-5

Close 91.1+10 903+12 882+£09 955£07 944+£06 92.8+£0.7
Median | 79.5+0.3 80.2+0.2 783+£02 969+05 978+04 969=+0.5
Far 284+23 338+27 33.7+£35 848+13 884+1.0 97.3£09
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Figure 6: True Positive Rate for (D, F, A C B, k) as a function of the number of queries randomly selected in
30/70, FPR = 5%, best delegate options for F(m) (dash) and F(m, ¥) (plain).

randomized smoothing, pruning (filter, all, last), JPEG, posterize (See App. . Alice thus computes 6 distances
based on their delegates and identifies the family i* = argmin; Dy (b, F(m, ¥;)). No thresholding is needed
here. For each family, 20 variants with random parameters and complying with are created. This leads to
700 new models tested in the black-box, different from the 1081 models considered so far.

Identifying F(m) Alice almost surely identifies the family F(m) of the black-box as shown in Fig.[7]and Tab.
She reaches her maximum success rate at around 300 queries. After this amount, no incorrect identification is
made but 10% of abstention remains. This is due to the thresholding which prevents Alice from misclassification
in the negative case. If no thresholding is done, the success rate reaches 92.8% within 100 queries and 98.2% at
500.

The number of queries is higher than for detection. For an equivalent level of performance, 4 times more
queries are necessary for identification than for detection. Nevertheless, identification proceeded by sequential
detection would take on average 3.000 queries (24 times more w.r.t. detection) as foreseen by .

Identifying F(m,¥) With a single delegate, Table [5| and Figure [8| show a rather difficult identification.
Variants far from the vanilla model are correctly identified. The main difficulty comes from the variations that
slightly modify the model. These variants are close to m, which is the center of the cluster F(m) (see Fig. ,
therefore it is hard to distinguish them. The compound with the median and the close delegates yields a
boost of 12 points.

Top-k observations The best results are obtained for £ = 1 in Tab. [5| on every task, like for detection. For
the family F(m), the information gained by top-k needs too many queries to catch up with the top-1. For family
F(m, ), the difference is smaller. Indeed, top-k with k < 3 gives slightly better results from a1.000 queries
and above.
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Table 4: True Positive Rate for (D, F, A C B, k) with random queries selected with 30/70, FPR = 5%.

Number of queries
L=20 L=50 L=100 L =500
top-1 55.0 83.4 91.1 98.7
F(m) top-3 47.9 81.4 90.3 97.9
top-b 39.3 78.2 88.2 97.2
top-1 32.0 84.7 96.9 99.8
F(m,¥) top-3| 312  91.3 97.8 100
top-b 29.4 84.7 96.9 100
100
Correct
Undecided
S0 Incorrect
60
=X
40 A
20
0 T T T T
100 200 300 400 500

Number L of queries

Figure 7: Probability distribution for (I, F/(m), A C B,1) vs. number L of queries. Threshold set to have a
maximum 5% errors in negative cases.

5 State-of-the-art benchmark

5.1 Previous Works

Since the work of IP-Guard [2] , all the fingerprinting papers deal with adversarial examples. All the papers
start with a small collection of benign inputs (except [12] starting from random noise images) and apply a
precise white-box attack like CW. It forges adversarial examples s.t. they lie close to the decision boundaries,
which are the signatures of a model.

Two trends are connected to two applications. The first one deals with the integrity of the model. In this
scenario, Alice makes sure that Bob placed her model in the black-box without any alteration. The goal is
to sense a fragile fingerprint s.t. any modification of the vanilla model is detectable because it changes the
fingerprint. Paper [8] creates sensitive examples which are adversarial only for the vanilla model.

The second application is robust fingerprint as presented so far in this paper. The followers of IP-Guard [2] forge
adversarial examples which are more robust in the sense that they remain adversarial for any variation of the
model while being more specific to the vanilla model. Paper [3] proposes to use the universal adversarial per-
turbations of the vanilla model. Paper [I3] introduces the concept of conferrable examples, i.e. adversarial
examples which only transfer to the variations of the targeted model. AFA [f] activates dropout as a cheap
surrogate of variants when forging adversarial examples. TAFA [] extends this idea to other machine learning
primitives like regression.

Our take in this paper is that using benign images is sufficient, and we addressed the fingerprinting problem
without the need to rely on adversarial examples or any other technique to alter images to get them nearby the
frontiers. Indeed, crafting adversarial examples is rather simple but forging them with extra specificities (fragile
or robust to variation) is complex. It happens that all papers consider small input dimensions like MNIST or
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Figure 8: Correct Identification Rate for F(m, ¥) as a function of the number of queries. One (plain) or two
(dashed) delegates per family.

CIFAR (32 x 32 pixel images); none of them use ImageNet (224 x 224) except IP-Guard [2] . Also, no paper
considers that the inputs can be reformed by a defense (in order to remove an adversarial perturbation before
being classified) or detected as adversarial [14].

5.2 Fragile fingerprinting

The application considered in [§] imagines that Alice wants to detect whether the black-box is exactly m and
not a variant. This corresponds to our scenario (D, F(m, {6}),.A = B,1) where 6 is the identity variation, and
A= F(m).

We create L = 20 sensitive examples per model with 200 iterations and two distortion budgets (¢ = 8/255
and 16/255) using their codeﬂ It happens that its performance on ImageNet (reported in Tab. @ is lower than
the one reported in [8] on small input size datasets (like CIFAR). Especially, this scheme can not distinguish
the vanilla model and its variants ‘JPEG’ or ‘Half precision’ even with a number of queries (L = 20) bigger
than the one recommended (L = 8) in [§]. Our scheme needs no more than two queries and performs perfectly
except when pruning the last layer for five out of thirty-five models.

5.3 Robust fingerprinting

This application is related to our scenario (D, F(m), A C B, k) IP-Guard [2] is the only work showing to be
tractable and effective on large input size like in ImageNet. It leverages several white-box attacks to create
adversarial examples. The best results demonstrated in the paper are with the attack CW [15]. We instead
use BP [16] because it exhibits similar performances while being much faster (only 50 iterations). The BP
implementation is from GitHuHﬂ

Table [7] compares the performances under 100 and 200 queries and top-1 observations. Any selection of the
inputs beats IP-Guard [2] . Detailed results are reported in App. Some variations are easier to be detected
(‘precison’, ‘pruning’) and the two methods are on par. On the contrary, randomized smoothing, a variation
never considered in the literature, is more difficult. IP-Guard [2] is based on crafting adversarial examples
close to the decision boundaries which are greatly ‘crumpled’ by random smoothing. Not relying on adversarial
examples seems to be a clear advantage here. Our method offers more stability in the results: No variation
pulls the TPR below 85%.

2Sensitive Examples’ GitHub: https://github.com/zechenghe/Sensitive_Sample_Fingerprinting
3Boundary Projection’s GitHub: https://github.com/hanwei0912/walking-on-the-edge-fast-low-distortion-adversarial-examples
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Table 5: Correct Identification Rate for (I, F, A C B, k) with random queries selected with Entropy.

Number of queries

L=50 L=100 L =500
top-1 66.7 81.3 91.8
dele at];(Ln){close} top-J 22.6 37.6 79.1
sate = top-5 | 21.1 48.0 82.0
top-1 66.0 70.9 73.7
dele ai(T,{\Irlrzedian} top-4 57.4 59.7 71.5
e top-5 | 509  60.3 69.8
top-1 | 68.3  76.1 82.5
delegate f({rzlg‘fe) median} top-3 | 53.9 61.4 80.6
e ’ top-5 | 54.3 65.0 80.5

Table 6: False Positive Rate for the (D, F = {m}, A = B, 1) task.

‘ Finetuning Histo. Random. Prune Poster. Half JPEG
‘ All  Last Smooth.  All Last Filter Prec.
. €= 55 18.1  20.3 0 35.7 154 315 574 77.0 100 100
— 25
Sens. Bx. B L=20 _ W 1914 18 o0 3.0 100 214 485 634 971 971
FBI with L =2 0 0 0 0 0 16.9 0 0 0 0

6 Related work

Model watermarking Having reviewed the related work dedicated to the fingerprinting task in the previous
section, we here review another closely related domain: the watermarking of models.

Watermarking is the active counterpart of fingerprinting: instead of relying on specifics of a fixed model
to devise its unique fingerprint, watermarking modifies the model for which ownership must be proven. While
watermarking is a common practice for decades in the field of image processing [I7], it has just recently been
incepted into the machine learning domain. Uchida et al. [I§] first proposed to watermark a deep neural
network by embedding it into the weights and biases of the model. Quickly after this initial proposal, works
instead focused on a black-box model, where the presence of a watermark can be assessed by Alice from
remote interaction with the suspected deep neural network, just like for fingerprinting. In [19], authors insert
information by altering the decision boundaries through finetuning. In [20], authors also retrain the model to
obtain wrong labels for a so-called trigger set of inputs, that constitutes the watermark. Please refer to [21] for
a complete overview of the domain.

Some papers claim that robust fingerprinting could replace watermarking with the clear advantage that no
modification of the model is needed [5]. We strongly disagree. No fingerprinting scheme, included ours, brings
any formal guarantee on what is in the black-box, just like for human biometric traits. It is indeed the primary
goal of watermarking to guarantee a certain level of trust.

7 Conclusion

The problem of accurate and efficient fingerprinting of valuable modern models is salient. This paper demon-
strates that such a demand can be fulfilled by just using benign inputs, in not only the classic detection task,

Table 7: Comparison of True Positive Rates for the (D, F(m), A C B, 1) task. FPR set to 5%.

Number of queries

Fingerprinting scheme Parameters L =100 L =200
IP-Guard [2] BP [16] & 50 iter. |  66.9 72.7
Random 79.4 91.5
FBI 30/70 91.1 97.4
Entropy 95.2 97.6
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but also in the novel identification task we have introduced. This implies that we no longer need models in
white-box access to compute their fingerprints.

We outline the following lessons:
In the walled garden setup of Sect. [3] less than ten inputs are needed but these are sequentially and carefully
selected among a large collection depending on the previous outputs of the black-box. In other words, the key
is the interaction between the greedy algorithm and the black-box. Observing top-1, top-3 or top-5 makes a
difference. It is easier to spot inputs that single out a model with richer outputs.

In the open-world setup of Sect. [d] hundreds of inputs are necessary but the scheme is not iterative and
selection is less crucial. Surprisingly, observing richer outputs does not yield a gain in this setup.

The identification task is more complex than detection but by a small amount only. Our identification
schemes are much more efficient than the naive sequential search.

The hardest variation of our experimental protocol is randomized smoothing for robust fingerprinting and
pruning the last layer for fragile fingerprinting. It means that the former reduces the statistical dependence of
the outputs while the latter hardly perturbs the outputs given by the vanilla model.

One limitation of our work is that it cannot handle classifiers whose accuracy is almost perfect. This would
happen for too easy classification setups where the value of models is lower, and fingerprinting is less critical.
We nevertheless expect future models and applications to be complex tasks, where reaching good accuracy levels
will remain a struggle.
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A Notations

Notations are summarized in Tab. 8

Table 8: Notations
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Dy (b, F)

the task of detection

the task of identification

a vanilla model as listed in Tab. |§|

variant obtained by applying procedure # on m
set of all variation procedures and parameters
accuracy of model m

the model in the black-box

top-k output of the black-box

the set of classes labeled from 1 to C

the set of top-k outcomes

falling factorial (C); :==C(C' —1)...(C —k+1)
set of models Bob can create as defined in
set of models known by Alice

set of public vanilla models listed in Tab. |§|
family spanned by vanilla model m

family spanned by m and variation ¥ C ©
a collection of benign inputs

size of X

an ordered list of indices in [N]

integers from 1 to N

set of outputs given by models in D for input z
subset of models of D giving y for input =
subset of candidate models at step /¢ @

score of input x at step £+ 1 when A =B

nb. of queries for a positive / negative detection
surjection from Zj to S :={0,1,...,k}

top-k output of black-box b or of model m
random top-k output when the input is random
similar outputs after the sujection

(k+1) x (k+ 1) transition matrix

Empirical mutual information in bits

Empirical entropy in bits

Distance between models with L queries
Distance of the black-box from family F
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B Models and variations

B.1 Description of the set of models

The core of the set A contains 35 ‘off-the-shelves’ vanilla models which were trained with supervision for the
task ImageNet over one million annotated 224 x 224 pixel images. These models come from the Timm [22] and
Torchvision [23] libraries. Among them, some are very close. For instance, there are 6 versions of EfficientNet-
b0. These models share the same architecture but they result from different training session. Yet, they are
considered as different models and this proves the efficiency of our method.

To forge a variant, we have selected 8 transformations. These are simple procedures easily applicable by
Bob. They move the decision boundary of the model with a limited drop in accuracy. As such, all of them have
already proven themselves as a defense against adversarial examples [24].

e Identity: The variant is an exact copy of the model.

e Model Precision: Deep neural networks usually encode weights and biases on 32 bits floating point
precision. The Torch class attribute half is used to reduce the precision to 16 bits.

e JPEG Compression: Before being classified, the input image goes through a JPEG compression. This
has been proposed as a defense: JPEG coarsely quantizes the high frequencies while adversarial per-
turbations are essentially composed of high frequencies. JPEG compression and decompression act as a
reformer [25] [26] 27]. No training is needed because models are robust to JPEG compression. The quality
factor ranges from 30 to 90 in step of 10.

e Histogram Equalizer: This increases the contrast in an image and it has been proposed as a defense
against adversarial perturbation in [24] 28]. We use the function transforms.functional.equalize from
Torchvision.

e Color Depth Reduction: Another defense is to reduce the depth of color channels to less than 8 bits [29],
here from 3 and 7 bits. The image is posterized with the function transforms.functional.posterize
from Torchvision.

e Randomized Smoothing: Randomized smoothing provides robustness guarantees [30, 31l B2] and is
also efficient against black-box attacks [33]. We take the Github implementatimﬂ of [30]. The number
of samples is set to 100 as recommended in the previous works. The standard deviations o selected are:
0.01, 0.02, 0.04, 0.06, 0.08, 0.1.

e Finetuning: Finetuning updates the weights of the model during a new training. We consider finetuning
all the layers or only the last one. Finetuning runs over 50 epochs with SGD optimizer.

e Pruning: Pruning compresses the model by removing the less important weights. It is applied with the
function nn.utils.prune.1l1 unstructured from Torch package. It removes the weights with the lowest
¢, norm. Pruning can be applied on all the layers or just some particular ones. Filter pruning [34] cuts the
less important output channels of the convolutional layers. We consider three options with the following
fraction of weights removed:

— Pruning All layers: 1%, 2%, 3%, 4%
— Filter Pruning: 10%, 20%, 30%,
— Pruning the Last layer: 70%, 80%, 90%, 95%

This makes a total of 33 procedures, most of them being easily and quickly applicable to any vanilla model.
Few of them imply a light retraining which is done with a subset of 50,000 images of the ImageNet validation
set. We end up with 1189 variants. The accuracy of each of them is measured on the remaining part of the
ImageNet validation set. If the drop of accuracy is bigger than 15% compared to the original model, then the
variant is discarded. Our final collection contains 1081 models and variants.

Alice has a collection of 20.000 images randomly taken from the ImageNet test set. These images are not
annotated with a ground truth. These were not used for training the models or retraining the variants.

B.2 Distance between models

The distances between all the pairs of models is shown in Fig.[0] The block diagonal shows that the distances
between variants of the same vanilla models are small. This distance matrix is the input of the t-SNE algorithm
which creates the 2D representation of Fig. We clearly see the cluster of variants centered on each vanilla
model.

4Randomized Smoothing GitHub: https://github.com /locuslab/smoothing
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Table 9: List of the 35 vanilla models and their variants. all means that all values listed in App. comply

with .

Nb of | Finetuning Half Histogram | JPEG | Posterize Prune Randomized
variants | All | Last | Precision All Filter Last Smoothing
CoaTrpitesmall 29 v v v v all all 0.01 all 0.7, 0.8, 0.9 all
ConVilsman 28 v v v all all 0.01 all 0.7, 0.8, 0.9 all
DLAo2 30 v v v all 4,5,6,7 all all all 0.01,0.02,0.04, 0.06, 0.08
DLAgo 32 v v v all all all all all all
DL Agsy 32 v v v v all all 0.01, 0.02, 0.03 all all all
DPNy, 33 v v v v all all all all all all
(Torch) Ef ficientNetyy 28 v v v v all all 0.01, 0.02 0.1,0.2 | 0.7,0.8,0.9 | 0.01,0.02,0.04,0.06,0.08
(TF) Ef ficientNety 25 v v v v all all 0.01 0.1,0.2 0.7, 0.8 0.01,0.02,0.04
(TF) Ef fici 28 v v v v all all 0.01, 0.02 0.1, 0.2 0.7,0.8 all
(TF) Ef ficientNetyo ns 28 v v v v all all 0.01, 0.02 0.1,0.2 | 0.7,0.8, 0.9 | 0.01,0.02,0.04,0.06,0.08
(TF) Ef ficientNetV 2y, 30 v v v v all all 0.01, 0.02, 0.03 all 0.7, 0.8, 0.9 | 0.01,0.02,0.04,0.06,0.08
HRNet,30 31 v v v all all all all all 0.01,0.02,0.04, 0.06, 0.08
LeViTyogs 28 v v v all all 0.01 0.1, 0.2 all all
LeViTse 30 v v v v all all 0.01, 0.02 all all all
LeViTsgy 32 v v v v all all 0.01, 0.02, 0.03 all all all
(Torch) ResNet50 28 v v v all 4,5,6,7 all all 0.7, 0.8, 0.9 0.01,0.02,0.04,0.06
ResNet50madry 30 v v v all all all all 0.7, 0.8, 0.9 | 0.01,0.02,0.04,0.06,0.08
MizNet; 29 v v v v all 4,5,6,7 | 0.01, 0.02, 0.03 all 0.7, 0.8, 0.9 | 0.01,0.02,0.04,0.06,0.08
MizNets 25 v v v all 4,5,6,7 0.01, 0.02 0.1, 0.2 | 0.7, 0.8, 0.9 0.01,0.02,0.04,0.06
MixzNet,; 32 v v v v all all all all 0.7, 0.8, 0.9 all
MobileNetV 21204 27 v v v v all all 0.01, 0.02, 0.03 | 0.1, 0.2 0.7,0.8 0.01,0.02,0.04, 0.06
MobileNetV 214 25 v v v v all all 0.01, 0.02 0.1 0.7, 0.8 0.01,0.02,0.04,0.06
MobileNetV 3,,, 25 v v v all 4,5,6,7 | 0.01,0.02,0.03 | 0.1, 0.2 0.7, 0.8 0.01,0.02,0.04,0.06
PiTy aistitled 33 v v v v all all all all all all
RegNetXso 31 v v v all all all all 0.7, 0.8, 0.9 all
ResNet50 32 v v v v all all 0.01, 0.02, 0.03 all all all
BiTrs0x1 32 v v v v all all 0.01, 0.02, 0.03 all all all
ReX Netis 30 v v v v all all 0.01, 0.02, 0.03 | 0.1, 0.2 | 0.7, 0.8, 0.9 all
ReX Netis 31 v v v v all all 0.01, 0.02, 0.03 | 0.1, 0.2 all all
ReX Netag 31 v v v v all all 0.01, 0.02, 0.03 | 0.1, 0.2 all all
Swinp 28 v v v v all all all 0.7, 0.8, 0.9 all
ResNeXti01,3204d 33 v v v v all all all all all all
ResNeXts 32044 33 v v v v all all all all all all
Twins — PCPVTyuse 28 v v v v all all all 0.7, 0.8, 0.9 all
ViTyase,patch=16 29 v v v v all all 0.01, 0.02 all 0.7, 0.8 all

C Proof of Equation (10)

Suppose that Bob selects b € F;. Alice makes a random permutation ¢ of the nz families and sequentially
tests them. Then, she spends L;°® queries to discover that the black-box does not belong to F;, for any i
s.t. (i) < o(j) (i.e. the families ranked by the permutation before F;) and LY queries to discover that the
black-box is a member of F;. Over all the random permutations, there is statistically one chance out of two
that F; is ranked before F;. On expectation, this makes the following number of queries:

nr
5 | “E(L5) + D _E(LF)
i) i=1

1 1
E (L§™) + 5 D _E(L{®) =E (Lj") + 5

We now suppose that Bob select a family uniformly at random, to obtain the following average:

1 S 0s nr—1 - ne
]E(L):EZ]E(L;.’ )+217FZE(ng). (27)
Jj=1 j=1

D Lower bound of the distance Dy

This section provides an example of the computation of the mutual information between the outputs of model m
and the black-box b. It considers that these classifiers yield only top-1 outputs. We assume that the surjection
S; is defined in w.r.t. the ground truth: Z = 1 when the black-box succeeds in predicting the ground truth.
The joint probability distribution is denoted by:

)|Y=0] VY=1
b

l—-a—-b—c

P(Z,Y
Z=0
Z=1

o 2

We suppose that the accuracies of both models are known, acc(m) = A and acc(b) = B, so that:

acc(m) = PY =1)=1—-a—c=A4, (28)
accb) = P(Z=1)=1—-a—-b=0B. (29)
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Figure 9: Distances between pairs of models.

These equations are constraints reducing the problem with three unknown parameters (a, b, c) to a single one:

From a, we can easily deduce (b, ¢) from the above equations. Since all these joint probabilities are between 0
and 1, this implies that

max(0,1 —(A+ B)) <a<min(1 - A,1 - B). (30)
The mutual information between the outputs Z and Y is given by:
I(ZY) = H(Z)+H(Y)-H(ZY)>0 (31)

WA)+h(B) - Y fB(Z=2Y=7)

(2.9)€{0,1}2

where f(x) := —xlogy x and h(p) == f(z) + f(1 — =) is the binary entropy in bits for p € [0,1]. Thanks to the
constraints and (29), the mutual information is a function of a, say I(Z;Y) = I(a). Its derivative cancels
at only one value giving I(a) = 0 achieved when Z and Y are independent, i.e.

a=(1-A)1-B), b=A1-B), c=(1-AB, d=AB.

This is thus a global minimum and the maximum of I(Z;Y) lies on the boundary of the range of a. Suppose
that A > B and A+ B > 1, then

I(Z;Y) < f(A) + max (f(B) - f(A+ B 1), f(1 - B) - f(A- B))
which is converted into a lower bound of the distance Dy, (b, m)

y _ f(4) + max(f(B) - f(A+ B 1), f(1 — B) — (A~ B))
min(f(4) +f(1-A), f(B) + f(1 - B))
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This function is illustrated in Fig. |12 where we see that Dy, (b, m) may cancel only when A= B or A=1- B.

Figure [13| compares this lower bound with the actual measurements for A = 0.45.

E Supplementary results

E.1 Known model A =B
Figures [14] and |15| show detection and identification results when using worst-case score .

E.2 Unknown model A C B
Table [10] justifies the use of a mixture of well and misclassified inputs under (D, F, A C B, 1).

E.3 Benchmark

Table [11] details the true positive rates per variation.
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Figure 12: Lower bound of the distance between two models of accuracy A and B under top-1.

Table 10: True Positive Rate for (D, F, A C B,1) when queried inputs are a mixture of well or misclassified
images. False Positive Rate is set to 5%.

Well / Mis-classified ‘ 50 inputs 100 inputs 200 inputs

0/100% 0.2% 0.1% 0.0%

5/95% 85.4% 84.8% 87.1%
10/90% 83.0% 84.6% 92.8%
15/85% 81.2% 88.8% 94.4%
20,/80% 82.1% 90.3% 95.1%
25,/75% 81.6% 91.5% 96.6%
30/70% 82.7% 91.7% 96.6%
35/65% 82.8% 91.2% 96.9%
40/60% 80.0% 90.8% 96.3%
45/55% 77.3% 90.2% 95.6%
50,/50% 79.7% 89.2% 95.4%
55,/45% 75.9% 88.8% 95.3%
60/40% 74.9% 87.2% 93.1%
65/35% 75.2% 86.5% 92.4%
70/30% 71.1% 84.7% 91.1%
75/25% 70.3% 85.7% 90.9%
80/20% 41.8% 83.6% 89.6%
85/15% 17.4% 80.9% 89.5%
90/10% 36.5% 30.2% 87.5%
95/5% 21.7% 57.2% 78.5%
100/0% 0.3% 0.6% 0.6%
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and F(m,{6}).
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and F(m, {6}).

Table 11: True Positive Rate per variation families under (D, F(m), A C B, 1). False Positive Rate set to 5%
and L = 100 queries submitted.

Method Param. ‘ Finetune Half Histo. JPEG Poster. Prune Random.
‘ All Last  Prec. All Filter Last  Smooth.
IP-Guard  BP 135 | = 993 190 273 100 9.2 727 892 100  26.1
2] 50 iter.
Random | 85.3 91.4 100 77.4 927 880 695 91.3 90.7 487
FBI 30/70 | 941 97.1 100 90.3 947 954 895 100 958  79.1
Entropy | 94.1 97.1 100 100 98.8 99.4 93.7 100 100  85.6
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