

Randomized Smoothing Under Attack: how good is it in practice? Thibault MAHO, Teddy FURON, Erwan LE MERRER Univ. Rennes, Inria, CNRS, IRISA, Rennes, France

Goal

Consider Randomized Smoothing as a defense and to evaluate its effectiveness on black-box attacks

Randomized Smoothing

For a binary classifier f, creates a deterministic classifier:

$$g_{\sigma}(\mathbf{x}) = \arg \max_{y \in \{0,1\}} \mathbb{P}[f(\mathbf{x} + \sigma \mathbf{N}) = y], \ \mathbf{N} \sim \mathcal{N}(0, I).$$

q_e have a certified local robustness

$$R(\mathbf{x}, \sigma) = \sigma \Phi^{-1}(P[f(\mathbf{x} + \sigma \mathbf{N}) = g_{\sigma}(\mathbf{x})], \mathbf{N} \sim \mathcal{N}(0, I)$$

 \rightarrow All points at a distance from x lower than $R(\mathbf{x}, \sigma)$ are classified with the same label

In practice, uses Monte Carlo with n samples to estimate R \rightarrow in practice equivalent to the random classifier $q_{\sigma,n}$

Problem

- $q_{\sigma,n}$ is not deterministic
- Recommendation not clear:
 - Number of samples: the higher the better, but no consensus for the minimum
 - Amount of noise: A high σ gives a better certification, but leads to an accuracy drop.
- Attacks are not considered in the literature anymore

Fig. 1: Certification for ResNet50

Adversarial Examples with Random Classifier

- Classical Definition defined on a deterministic classifier.
- On random classifier, they have a confidence score P_a.

$$\mathbb{P}[g_{\sigma,n}(\mathbf{x}_a) \neq g_{\sigma}(\mathbf{x}_o)] \ge P_a.$$

Impact on black-box attacks

- Black-box attacks main steps:

 o Binary Search

 - Gradient Estimation
- Randomized Smoothing have no impact on gradient estimation but can perturb the binary search where a single wrong prediction lead to a bad convergence.
 - → The lower the number of samples, the more the binary search can be impacted

Fig. 3: Distribution of the output of a binary search with RS.

The reason: Randomized Smoothing greatly perturbs the boundary with a low number of samples. The prediction of a point on the boundary easily changes.

Fig. 2: 2D slice in the image space of ResNet50 with and without RS. Each point is an image, his color represents the elected label

Small amount of noise is

enough

· High amount of noise