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Goal Adversarial Examples with Random Classifier Results
Consider Randomized Smoothing as a defense and to evaluate its *  Classical Definition defined on a deterministic classifier v 10
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. For a binary classifier f, creates a deterministic classifier: . 15
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go(x) = arg max P[f(x+0oN) = y], N ~N(0,1). o Binary Search Accuracy Accuracy
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e Randomized Smoothing have no impact on gradient estimation but
. g- have a certified local robustness can perturb the binary search where a single wrong prediction lead to . -
a bad convergence. - ode!
R(x,0) = 0® Y (P[f(x + oN) = g,(x)], N ~ N(0,1) b—é'irmhsalgré%rt e number of samples, the more the binary search can E“’ ® RS
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. In practice, uses Monte Carlo with n samples to estimate R ,_?_“1_) < ;g
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Fig. 3: Distribution of the output of a binary search with RS. Accuracy *: 50%
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Problem . The reason: Randomized Smoothing greatly perturbs the © ¥
. o boundary with a low number of samples. e ;he {?S‘flés. ?f rat'" blacl;]boxtagga:;ks e mpa@ted th
° Jo,n is not deterministic The prediction of a point on the boundary easily changes. * \ifng Ir(z)abusltsngslsons atleast 30 times larger than the cer-
. Recommendation not clear: . . Comparison between the recommendations made for theoretical
o Number of samples: the higher the better, but no % i robustness and practical robustness:
consensus for the minimum
o Amount of noise: A high o gives a better j |
certification, but leads to an accuracy drop. Theoretical Robustness Practical Robustness
. Attacks are not considered in the literature anymore
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= Fig. 2: 2D slice in the image space of ResNet50 with and without RS. Each point o High amount of noise * Small amount of noise is
—~ N \ is an image, his color represents the elected label enough
\ 3 Fig. 1: Certification for ResNet50
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